PROJETO PUMA
PROGRAMA DE MANEJO AMBIENTAL

Fevereiro de 2013
Versão final
Autor: Dr. Marcelo Mazzolli
CRBio3 28575-03
TABELA DE CONTEÚDO

1. RESUMO ..3
2. LISTA DE ABBREVIAÇÕES ...3
3. OBJETO ..4
3.1 Localização ..4
4. HISTÓRICO E CONTEXTUALIZAÇÃO ...5
5. JUSTIFICATIVA E BASE TEÓRICA ...6
5.1 Porque os pumas e os felinos ...6
5.2 Explicando a exigência de recursos: alimento e território ...7
5.3 A demanda de espaço e território explica porque pumas são raras ..7
5.4 Densidade (número de indivíduos por área) ..8
5.4.1 Densidades de outros felinos ..9
5.5 Status do puma no sul e sudeste do Brasil ..11
5.6 Conhecimento sobre o puma e felinos na área de interesse ..12
5.7 Uso de passagens de fauna ..13
5.7.1 Dimensões dos passa-fauna ..13
5.7.2 Cercas ...14
5.7.3 Bueiros ..15
5.8 Fatores determinantes nos deslocamentos do puma e outros felinos ..16
6. METODOLOGIA ..17
6.1 Cronograma de trabalho ..17
6.2 Área de estudo ...18
6.3 Análise ..18
6.3.1 Análise macro (espacial) ..18
6.3.2 Análise macro-terciária (espacial-populacional) ..18
6.3.3 Análise pontual ..18
6.3.4 Análise espacial-terciária ...18
6.4 Detalhes metodológicos ...18
6.4.1 Análise espacial ...18
6.4.2 Análise de metapopulações e de população mínima viável ..21
7. RESULTADOS ...22
7.1 Evidência de trajetorias migratórias ..22
7.2 Outros resultados a campo e teste de metodologia ..24
7.3 Análise espacial ..24
7.3.1 Ocupação humana ..24
7.3.2 Uso do solo ..25
7.3.3 Declividade e altitude ...26
7.3.4 Densidade de habitações por tipo de uso do solo ..30
7.4 Barreiras ...31
7.5 Análise de metapopulações ..32
7.5.1 Estimativa de hábitat e densidade de pumas por bloco ...32
7.5.2 Efeito de isolamento - Bloco sul ..34
7.5.3 Metapopulação – todos os blocos ..35
7.6 Passagens de fauna ..36
8. DISCUSSÃO ...37
8.1 Pontos de travessia de fauna ...37
8.2 Corredores ecológicos ...37
8.2.1 Modelagem de habitação ...37
9. SUGESTÕES ..38
9.1 Monitoramento durante instalação da obra ...38
9.1.1 Detectar novos pontos de trânsito de fauna ..38
9.1.2 Avaliar hábitat para as espécies ...38
9.2 Monitoramento e manejo após instalação da obra ...38
9.2.1 Avaliar eficiência das passagens de fauna ..38
9.2.2 Monitorar pontos de atropelamento ..39
9.3 Manejo de ecosistemas para manutenção de conectividade ...39
9.3.1 Evitar polvoamento habitacional às margens da rodovia ..39
9.3.2 ‘Quebrar’ barreiras migratórias já existentes ...39
9.3.3 Acompanhamento do crescimento de barreiras migratórias ...40
9.3.4 Detectar com precisão as rotas migratórias usadas pelas espécies ..40
9.4 Estudos EIA para novos empreendimentos rodoviários ..40
10. LITERATURA CITADA ..41
11. ANEXOS ...45
11.1 Anexo I – Demanda do estudo ..45
11.2 Anexo II – consequência de avaliações equivocadas ..46
11.3 Anexo III – SIG, converter temas multipontos para pontos usando um script47
11.4 Anexo IV – Dados para simulação de metapopulação ..48
1. Resumo

OBJETIVO: Abordar aspectos de conservação de felinos, indicando áreas críticas para a conservação destes na região do Alto Vale do Itajaí. Analisar a viabilidade do empreendimento de pavimentação da SCT 477 frente à manutenção de espécies da fauna, apresentando medidas mitigadoras aplicáveis. METODOLOGIA: Consistiu em saída a campo para reconhecimento do trecho a ser pavimentado; análise em SIG de mapas de vegetação, altitude, unidades habitacionais e declividade; e simulações de viabilidade de metapopulações de puma assumindo populações no Bloco Sul, Central e Norte. RESULTADOS: Ptos de travessia de fauna- A campo registrou-se vários pontos de uso da rodovia e travessia por animais silvestres, inclusive pelo puma, quase todas na porção leste da rodovia. Corredores ecológicos- Na análise em SIG, verificou-se que a floresta nativa em bom grau de regeneração e os reflorestamentos possuem uma densidade menor de unidades habitacionais que os outros tipos de uso do solo e por isto estão mais propensos a serem usados como corredores. Barreiras- Foi detectada uma barreira de ocupação humana que pode ter isolado ou isolará a conexão entre o Bloco Sul (Parque Nacional de Itajaí) e os outros dois Blocos. Metapopulação- simulações prevêem que os três blocos, caso conectados, favorecem a viabilidade da população de pumas e outros felinos a longo prazo. Hábitat- Exceto no Bloco Sul, onde localiza-se o Parque Nacional da Serra do Itajaí, as áreas de vegetação natural são mais extensas fora das Unidades de Conservação, chegando até 9 vezes superior no Bloco Central. Passagens de fauna- foram sugeridas 26 passagens de fauna, cercas para direcionamento para passagens, e pontos de fuga. CONCLUSÕES: A região ainda apresenta condições de abrigar populações de puma e felinos, mas há expansões de residências criando gargalos e barreiras em alguns pontos que devem ser contidas para que não haja extinção local. As maiores extensões de floresta nativa contínua e em bom estado de regeneração encontram-se fora das Unidades de Conservação. As Unidades de Conservação não tem como manter as populações viáveis de felinos sem a conservação dos grandes remanescentes da região. A pavimentação é viável desde que as passagens de fauna e formas de evitar povoamento nas margens da rodovia sejam implantadas. Não há viabilidade para instalação de túneis para passagens de automóveis cortando montanhas porque não há declividade suficiente do terreno – caso fossem implementados, seriam túneis subterrâneos (tipo metrô).

2. Lista de abreviações

APA – Área de Proteção Ambiental
DEINFRA – Departamento Estadual de Infraestrutura
EIA – Estudo de Impacto Ambiental
Espécies-foco (ou alvo) – espécies alvo de um determinado estudo, geralmente uma parcela da comunidade total de espécies, representado por um grupo taxonômico ou por indicadores de atributos ambientais
FATMA – Fundação (Estadual) do Meio Ambiente
GPS – Sistema Global de Posicionamento
SIG – Sistema de Informações Geográficas
Suplementação – Considerada no modelo de metapopulações do aplicativo Vortex como a necessidade de imigração externa para manter uma população viável da fauna
3. **Objeto**

...‘No laudo técnico deverão ser abordados aspectos de área de vida e fragmentação de habitat, corredores ecológicos e fluxo gênico, e conservação das espécies supramencionadas (Leopardus tigrinus, L. wiedii, P. concolor) e indicação de áreas críticas para a conservação das mesmas. O laudo deverá apresentar avaliação conclusiva quanto à viabilidade do empreendimento frente à manutenção das espécies e, sendo o caso, apresentar medidas mitigadoras aplicáveis, como alternativas tecnológicas, passagens de fauna e sinalização. O documento poderá apresentar também, mas não obrigatoriamente, sugestões de ações para a conservação de outros mamíferos presentes na região e sugestões que minimizem atropelamentos.’... ‘Para esta análise deverá ser estudada a alternativa túnel e outras tecnologias entre os quilômetros 126 a 140 com vistas a manter conectividade para estas espécies. Este estudo tem a função de assegurar às espécies de felinos uma área de corredor ecológico em área de floresta bem preservada e contínua, e assegurar-lhes sua conservação’.

O projeto da estrada foi idealizado como forma de atender às demandas de tráfego, ligando o Planalto Norte aos municípios do Médio Vale do Itajaí e ao litoral. Haverá uma pavimentação asfáltica, a qual será realizada quase que inteiramente sobre uma estrada de terra já existente.

Houve uma confrontação de alternativas de trechos, um norte e outro sul. O Deinfra opta pela alternativa norte, em razão do trecho sul cortar a conexão entre as duas glebas da Reserva Biológica Estadual do Sassafrás e passar por área indígena sujeita a interdições periódicas. No EIA o Índice Global de Impacto Ambiental é praticamente igual entre alternativas norte e sul (DEINFRA, 2012a). Em ofício complementar número 0312013 de 14/01/2013 à FATMA, entretanto, o DEINFRA aumenta o Índice Global de Impacto Ambiental da Alternativa (IGA) do trecho sul em aproximadamente 60% acima do trecho norte, ao considerar a inclusão do trecho SC 422 de Bonsucesso à SC 477 como parte do projeto. Segundo o DEINFRA, caso o trecho sul fosse implementado, seria necessário também pavimentar o trecho da SC 422, cortando a APA do Rio Preto no sentido norte-sul (Fig. 1).

3.1 **Localização**

O projeto de pavimentação da rodovia SCT-477, trecho Moema – SC 422 - Doutor Pedrinho tem 72,6 Km de extensão. Localiza-se nas Mesorregiões do Planalto Norte Catarinense e Vale do Itajaí, cruzando as microrregiões de Blumenau (Rio dos Cedros e Doutor Pedrinho), Canoinhas (Itaiópolis e Mafra) e São Bento do Sul (Rio Negrinho). Cruza as vertentes do Atlântico e do interior, nas sub-bacias do Rio Itajai-açu e sub-bacia do Rio Preto.
Figura 1. Projeto de pavimentação da rodovia SCT 477 (em vermelho), mostrando os lados leste e oeste que serão referidos no texto a seguir. Indicado também a alternativa sul da rodovia (em preto). Fonte: EIA tomo I.

Tabelas

<table>
<thead>
<tr>
<th>SEÇÃO</th>
<th>RODOVIA</th>
<th>TRECHO</th>
<th>EXTENSÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>VG-01</td>
<td>SC-477</td>
<td>Moema – Bom Sucesso</td>
<td>13,7 km</td>
</tr>
<tr>
<td>VG-02</td>
<td>SC-477</td>
<td>Bom Sucesso – Dr. Pedrinho</td>
<td>29,2 km</td>
</tr>
<tr>
<td>VG-03A</td>
<td>SC-422</td>
<td>Volta Grande – SC-477</td>
<td>8,1 km</td>
</tr>
<tr>
<td>VG-03B</td>
<td>SC-422</td>
<td>SC-477 – Bom Sucesso</td>
<td>25,8 km</td>
</tr>
<tr>
<td>VG-04</td>
<td>SC-477</td>
<td>Volta Triste – SC-422</td>
<td>36,2 km</td>
</tr>
<tr>
<td>VG-05</td>
<td>SC-477</td>
<td>SC-422 – Dr. Pedrinho</td>
<td>29,2 km</td>
</tr>
</tbody>
</table>

Fonte: EIA tomo I

4. Histórico e contextualização

Os documentos produzidos para subsidiar a conservação da fauna durante o projeto de pavimentação da rodovia SCT 477 foram o EIA/RIMA, e um relatório complementar do EIA solicitado pela FATMA. Este documento é, portanto, a segunda complementação solicitada pela FATMA.

As passagens construídas para permitirem o cruzamento de rodovias pela fauna são um elemento essencial do trabalho de conservação da fauna. Como citado no
relatório complementar de fauna do EIA, para que tenham maior eficácia, ‘é essencial que os passa-fauna estejam localizadas nos caminhos preferenciais da fauna, o que depende de um bom diagnóstico prévio’ (DEINFRAb, 2012). O EIA original não contemplou a localização destas passagens preferenciais da fauna, preocupando-se em fazer um levantamento faunístico em dois sítios, um procedimento que tem se tornado padrão para os EIA/RIMA (ver Mazzolli et al., 2008 para uma crítica).

O relatório presente trata de construir um embasamento para subsidiar um parecer, sem intenção de substituir o EIA/RIMA. Esta condição provoca limitações de tempo e articulação que também impedem uma investigação minuciosa sobre as áreas de passagem de fauna – limitação esta que pode ser superada em empreendimentos futuros caso as demandas de estudo de passagem de fauna sejam incorporadas logo no EIA/RIMA na forma de um termo de referência. Espera-se que, mesmo assim, as medidas sugeridas no EIA complementar e neste relatório sejam suficientes para mitigar possíveis impactos negativos sobre a fauna em razão da obra.

Durante o estudo ficou claro que a literatura nacional está cheia de generalizações sobre os tipos de passagens usadas pela fauna, fazendo-se uso de referências a outros autores de forma pouco fiel. A comunicação científica pode ter também natureza inconsequente, sobretudo aquelas produzidas durante períodos curtos de pós-graduação. Mesmo alguns cientistas de renome foram desmascarados ao comunicar de forma incompleta seus dados. O diretor e cientista-chefe do programa de conservação do puma da Flórida, por exemplo, comunicou em seus artigos que o puma fazia uso principalmente de área florestadas. O departamento de rodovias do estado começou a construir em áreas abertas e pumas começaram a morrer atropelados. Uma comissão de cientistas teve acesso judicial aos dados originais do autor, descobrindo que o cientista-chefe havia omitido, entreme outras coisas, as localizações de puma em áreas abertas em seus artigos (Beier et al., 2006; Anexo II). O cientista perdeu sua reputação e seu cargo.

No estudo realizado aqui para o trecho da SCT 477, fez-se uma análise profunda da literatura, não apenas observando quais estruturas para passagem são recomendadas para o grupo taxonômico em questão, mas buscando na literatura científica aquelas que registraram a campo as preferências de uso de passagens por felinos.

5. **Justificativa e base teórica**

5.1 **Porque os pumas e os felinos**

Antes de iniciar é preciso esclarecer porque considerar os felinos, e principalmente o puma, para gestão territorial. Conservar sem planejar a sobrevivência do puma pode resultar em áreas com apenas uma parcela da biodiversidade que se esperaria de áreas onde ainda habitam o puma e outros felinos. Isto porque ao planejar para conservar este grupo taxonômico, de grande mobilidade, é preciso planejar a conectividade dos ambientes em uma escala espacial medida de várias dezenas a centenas de quilômetros.

Como qualquer espécie, o puma e demais felinos precisam de uma certa taxa de imigrantes para evitar endogamia, ou cruzamento entre congêneres. A endogamia provoca perda de fertilidade, aumento de mortalidade infantil, e provoca mal-
formações. Além disso, leva à perda de diversidade genética, o que torna a população de qualquer espécie menos preparada para mudanças ambientais. A diferença de outras espécies, aquelas de hábito carnívoro e tamanho grande tem uma maior exigência de recursos ambientais e de território – por isto sua presença indica uma área com relativa capacidade de suporte, também para outras espécies, aquelas das quais o puma depende para se alimentar, e para outros felinos com menor exigência de recursos (menor tamanho).

Há muito mais informação sobre o puma do que sobre outros felinos. Essencialmente porque o puma é mais conspícuo, sendo possível identificá-lo por rastos assim como a jaguatirica. Felinos menores não podem ser diferenciados por rastro. É conspícuo também por atacar rebanhos domésticos. Além disso, o puma tem extensa distribuição na América do Norte, onde há um volume incomparavelmente superior de produções científicas em relação à América do Sul e Central. Por estas razões, e por ser mais exigentes em termos de recursos alimentares do que as outras espécies de felinos Brasileiros, a maior parte da modelagem de populações neste trabalho será centrada no puma. Além disso o prazo de análise para este trabalho é curto, não haveria tempo hábil para modelar cada espécie individualmente.

5.2 Explicando a exigência de recursos: alimento e território

Uma espécie grande consome mais recursos do que uma espécie pequena, pois precisa alimentar um corpo grande. O tamanho corpóreo está também diretamente relacionado com a exigência de espaço. Um herbívoro pastador pequeno irá ocupar uma área pequena, pois encontra nesta área circunscrita o suficiente para manter-se, ao passo que um herbívoro grande precisa se deslocar mais longe para encontrar seu suprimento. Os herbívoros solitários ocupam relativamente pouco espaço - não contabilizamos aqui as manadas de gnu e zebras do Serengueti e Tanzânia, que por formarem manadas enormes, e com seus hábitats sujeitos a secas anuais, promovem o maior espetáculo de migração da terra. Tomando a anta como exemplo de herbívoro solitário, pesa ao redor de 200 kg e irá ocupar uma área geralmente entre 1.0 a 3,9 km² (Tobler, 2008), equivalente a 1 x 1 até 2 x 2 km, e excepcionalmente até 4,7 km² (Medici, 2010). Os carnívoros, e especialmente os carnívoros absolutos como os felinos (que sequer possuem dentes molares funcionais para mastigação), não encontram seu alimento brotando do chão. Precisam buscar o alimento que está disperso no ambiente, um alimento móvel que na maioria das vezes tem a capacidade de escapar. Um ambiente antropizado provoca um aumento ainda maior na área exigida pelo predador, pois o mesmo alimento procurado pelo puma é caçado pelo homem, e perseguido como passatempo pelos seus cachorros, reduzindo sua disponibilidade e número, fazendo com que o felino tenha de caminhar mais para encontrar o alimento.

5.3 A demanda de espaço e território explica porque pumas são raros

Um puma pesa menos que uma anta — 200 kg da anta contra 40 a 60kg de um puma macho adulto. Mas sua área de vida é 100 a 360 vezes maior do que a da anta em razão de seu hábito carnívoro, obrigando-o a caminhar muito para encontrar seu alimento.

O puma apresenta também um comportamento territorial (assim como os demais felinos) que impede que indivíduos se aglomerem como fazem as capivaras, os gnus e as zebras, em bandos grandes. Ou seja, por mais que aumente a sua
população, uma concentração (densidade) máxima por área não será ultrapas-
sada. A população precisa crescer para os lados, os jovens procuram territórios em
áreas adjacentes às já ocupados por adultos.

5.4 Densidade (número de indivíduos por área)

As informações acima explicam porque os pumas são raros e ameaçados. Há
poucos pumas por área. Um único puma irá ocupar uma área de 100 km² (10 x10
km) até 1700 km² (41 x 41 km) (McBride 1976; Anderson, 1983), dependendo da
disponibilidade ou não de presas – isto em áreas silvestres, sem urbanização. Apesar
de territoriais, suas áreas de vida não são completamente exclusivas, podendo
haver alguma sobreposição de territórios, sobretudo entre machos e fêmeas.

Se delimitarmos, então, uma área equivalente a uma área de vida de um puma de
10x10 até 41x41 km, de forma aleatória, em uma região habitada por pumas,
haverá aproximadamente três ou quatro pumas, provavelmente com seus territórios
parciais sobrepondo-se (Fig. 2). Contagens como esta superestimam as populações
de puma.

Figura 2. Sendo o quadrado equivalente a uma área de vida de um puma, de 10x10 até 41x41 km,
sobreposta em uma área habitada por pumas, nesta mesma área dificilmente será encontrada uma
área exclusiva de um único indivíduo (círculos), mas áreas de vida parciais de três ou quatro
indivíduos.

A densidade populacional é uma informação crítica para manejo de populações
porque está correlacionada com o risco de extinção (Eisenberg, 1980; Fagan et al.,
1999). É calculada contando o número de indivíduos existentes em uma área. Em
áreas pequenas, como na área do quadrado acima, geralmente haverá
superestimativas, ou seja o número de pumas será maior do que o real - conta-se
três pumas mas sem incluir a área de vida total dos indivíduos. E se a contagem for
em área bem preservada, não é possível extrapolar o cálculo para áreas mistas
(preservadas e antropizadas).

Estudos conduzidos em áreas pequenas, com alta concentração de pumas,
geralmente resultam em uma densidade grande por área (densidade ecológica).
Mazzolli (2010) calculou a densidade ecológica do puma em uma área bem
protectida do Paraná, em 0,06 a 0,09 por km². Áreas grandes, ao contrário das áreas
pequenas com altas concentrações da espécie, geralmente englobam não
apenas habitats adequados, mas também aqueles onde o puma está ausente ou
em baixa densidade. Para áreas grandes ou sujeitas à forte antropização, como a
do estudo apresentado aqui, utiliza-se a densidade bruta para modelagem. Na
América do Norte, onde avaliações populacionais são periódicas em função do
estabelecimento de cotas de caça, densidades brutas variam de 0,005 a 0,049 por km² (Anderson, 1983). Para a modelagem de metapopulação e população mínima viável (PMV) que será calculada mais a frente neste estudo, o valor médio de 0,027 pumas por km² será utilizado. Para se ter uma ideia do que isto representa, o Parque Nacional da Serra do Itajaí de 57.374 ha (573,74 km²) comportaria 15 pumas (573,74 x 0,027). Os demais felinos têm exigências similares de território, ou menores (Tabela 1), pois alimentam-se principalmente de pequenos mamíferos como pequenos roedores e marsupiais, distribuídos mais uniformemente e em maior abundância.

Várias modelagens de rotas de migração foram realizadas com populações de pumas, especialmente na América do Norte (e.g., LaRue & Nielsen, 2008). Trata-se de produzir um mapa a partir de sobreposições de vários fatores que podem influenciar o movimento do puma, e um dos métodos mais usadas é o do ‘caminho menos custoso’ (least-cost path). Mas questão crucial na veracidade do resultado não é o método usado, senão os dados que alimentam o modelo. É preciso ter os dados que influenciam a movimentação do puma. Depois de ter os dados, é preciso saber como cada um dos fatores contidos nos dados influencia a movimentação do puma, e a partir disto conferir uma pontuação arbitrária para cada fator, por exemplo, vegetação, concentração de unidades habitacionais, relevo, etc.

As modelagens de deslocamento são ideias para encontrar os corredores ecológicos, desde que, como dito anteriormente, os dados que influenciam o deslocamento estejam disponíveis. Estes modelos, entretanto, não são informativos quanto ao número populacional e sua viabilidade, a menos que sejam realizados cálculos em separado. As modelagens de metapopulações, por outro lado, a partir da área disponível modelada em SIG, permite inferências sobre viabilidade e extinção. Uma outra diferença é que o valor conferido a um tipo de uso do solo como habitat pode diferir de seu valor como corredor. Por exemplo, uma área relativamente degradada pode servir de passagem, mas não será muito funcional como habitat provedor de recursos alimentares. Um problema do método ‘caminho menos custoso’ que vem sendo utilizado é de que um tema tem um valor fixo independente de seu contexto e proximidade com outros temas. A mata nativa, por exemplo, em realidade tem um valor diferente quando conectada do que quando isolada em fragmentos.

5.4.1 Densidades de outros felinos

5.4.1.1 Jaguatirica

A densidade (provavelmente ecológica) da jaguatirica obtida por câmaras fotográficas em vários estudos pode variar de 0,04 a 0,6 indivíduos por Km² (Dillon, 2005; Goulart et al., 2009), resultando em uma média a grosso modo de 0,32 indivíduos por Km². Em uma reserva na Mata Ombrófila Densa de Santa Catarina sua densidade média foi de 0,04 indivíduos por Km² (Goulart et al., 2009). É uma espécie relacionada à hábitos florestais, em Santa Catarina podendo habitar áreas de campo nativo entremeados com florestas (Mazzolli, 2006).
5.4.1.2 Gato maracajá

A área de vida do gato maracajá varia de 1 a 20 km² (Payan et al., 2008). Em uma área de estudo de 5 km², dez indivíduos foram registrados (Vanderhoff et al., 2011), resultando em uma densidade (ecológica) a grosso modo de 2 indivíduos por km². Primariamente associado à florestas densas, é por vezes observado em áreas mais alteradas próximas à habitações humanas (Oliveira, 1998). É o mais arborícola dos felinos, com adaptações para acrobacias arbóreas encontradas em apenas outras duas espécies de felino no mundo — é capaz de rotacionar a pata traseira a 180 graus, podendo então descer de uma árvore de cabeça para baixo, como um esquilo (Leyhausen, 1963).

5.4.1.3 Gato do mato pequeno

Sua densidade pode variar de 0,07 a 0,13 indivíduos por Km², havendo evidências de que prospere em ambientes bastante alterados onde outros felinos já foram extintos (Oliveira-Santos et al., 2012).
5.4.1.4 Jaguarundi

O jaguarundi tem sido registrado em uma variedade de habitats, desde campos até florestas. Em Santa Catarina aparece como vítima constante de atropelamentos, talvez em razão de sua intimidade com travessia de ambientes abertos (Mazzolli, com. pes.).

![Jaguarundi](image)

Tabela 1. Densidade e área de vida dos felinos que ocorrem na área de estudo. As densidades mais altas geralmente são oriundas de estudos em locais protegidos ou pouco modificados, gerando densidades ‘ecológicas’. A densidade ‘bruta’ é aquela estimada para áreas da paisagem que abrigem regiões heterogêneas e alteradas, mas são poucas as estimativas brutas em estudos da fauna.

<table>
<thead>
<tr>
<th>Espécie</th>
<th>Nome latim</th>
<th>Área de vida (km²)</th>
<th>Densidade (km²)</th>
<th>Densidade média (km²)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gato do mato pequeno</td>
<td>Leopardus tigrinus</td>
<td>0.9 a 17</td>
<td>0,07 a 0,13</td>
<td>0,10</td>
<td>Oliveira-Santos et al., 2012</td>
</tr>
<tr>
<td>Gato maracajá</td>
<td>Leopardus wiedii</td>
<td>1 a 20</td>
<td>0,05 a 2</td>
<td>1,02</td>
<td>Oliveira, 1998a; Vanderhoff et al., 2011</td>
</tr>
<tr>
<td>Jaguarundi</td>
<td>Herpailurus yagouaroundi</td>
<td>8,5 a 20,5</td>
<td>0,25 a 0,8</td>
<td>0,52</td>
<td>Caso, 1994; Oliveira, 1998b; Michalski et al., 2007</td>
</tr>
<tr>
<td>Jaguatirica</td>
<td>Leopardus pardalis</td>
<td>0.4 a 33</td>
<td>0,04 a 0,6</td>
<td>0,32</td>
<td>Dillon, 2005; Goulart et al., 2009</td>
</tr>
<tr>
<td>Puma</td>
<td>Puma concolor</td>
<td>100 a 1.700</td>
<td>0,005 a 0,049</td>
<td>0,03</td>
<td>Anderson, 1983</td>
</tr>
</tbody>
</table>

5.5 Status do puma no sul e sudeste do Brasil

O puma chegou quase a extinção nas regiões sul e sudeste do Brasil em décadas passadas (Mazzolli, 2012). Seu retorno foi o pesadelo dos criadores de ovelhas. Rebanhos antes grandes e criados extensivamente tiveram de ser reduzidos para adequar-se à currais próximos às casas, onde as taxas de ataque são menores (Mazzolli et al., 2002; 2012). Castilho et al. 2011 corroborou esta hipótese da quase extinção pretérita ao registrar uma baixa diversidade genética da população de pumas em Santa Catarina, através de exame de DNA da população serrana, fruto
de uma redução numérica drástica da população da espécie no passado, confirmando a quase extinção da espécie.

Sendo assim, é coerente argumentar que a espécie, apesar de recentemente ter recolonizado e repovoado áreas de sua antiga distribuição no sul e sudeste do Brasil (Mazzolli, 2012), estas regiões estão no limite mínimo para suporte da espécie. A ocupação territorial desordenada poderia novamente desencadear sua extinção local.

5.6 Conhecimento sobre o puma e felinos na área de interesse

O conhecimento que existe sobre o puma e outros felinos na área de interesse consiste de alguns registros pontuais (Tabela 2). Até agora não houve qualquer estudo para determinar áreas preferenciais para o grupo nesta região.

Tabela 2. Pontos de localização de puma e outros felinos próximos à área de interesse. ND = não disponível.

<table>
<thead>
<tr>
<th>Espécie</th>
<th>Local</th>
<th>Data</th>
<th>Coordenada geográficas</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puma</td>
<td>Parque Nacional da Serra do Itajaí</td>
<td>2009</td>
<td>ND</td>
<td>Hasckel et al., 2009</td>
</tr>
<tr>
<td></td>
<td>Alto Palmeiras, Rio dos Cedros</td>
<td>1988</td>
<td>ND</td>
<td>Mazzolli et al., 2002</td>
</tr>
<tr>
<td></td>
<td>Dr. Pedrinho</td>
<td>≈ 1990</td>
<td>Entre Bonsucesso e Rio dos Cedros</td>
<td>Mazzolli et al., 2002</td>
</tr>
<tr>
<td>Jaguatirica</td>
<td>Reserva Biológica Estadual do Sassafrás</td>
<td>2004-2008</td>
<td>ND</td>
<td>Tortato et al. (manuscrito não publicado)</td>
</tr>
<tr>
<td>Gato do mato grande</td>
<td>Reserva Biológica Estadual do Sassafrás</td>
<td>2004-2008</td>
<td>ND</td>
<td>Tortato et al. (manuscrito não publicado)</td>
</tr>
<tr>
<td>Gato maracajá</td>
<td>Reserva Biológica Estadual do Sassafrás</td>
<td>2004-2008</td>
<td>ND</td>
<td>Tortato et al. (manuscrito não publicado)</td>
</tr>
<tr>
<td>Jaguarundi</td>
<td>Reserva Biológica Estadual do Sassafrás</td>
<td>2004-2008</td>
<td>ND</td>
<td>Tortato et al. (manuscrito não publicado)</td>
</tr>
</tbody>
</table>

Um estudo em escala ampla sobrepondo mapas de altitude, vegetação remanescente, e presença de pumas foi produzido na década de 90 (Mazzolli, 1993). Este estudo é relevante para o presente trabalho pois revela que na região
do projeto de pavimentação há áreas remanescentes de altitude em bom estado de conservação, hábitat do puma, especificamente nos pontos 13 e 14 (Fig. 3).

5.7 Uso de passagens de fauna

5.7.1 Dimensões dos passa-fauna

No estudo complementar de fauna do EIA (DEINFRA, 2012), os passa-fauna que serviriam para o puma e outros felinos são sugeridos como sendo bueiros de 2,4 metros de diâmetro modificados pela adição de uma passagem seca de 60 cm de altura. Dimensões mínimas aceitáveis para passa-fauna não estão claramente estabelecidas. Estas dimensões são também importantes porque determinam o custo da estrutura (Forest e Humphrey, 1995). As informações mais completas sobre passa-fauna para pumas são oriundas de estudos com o puma e outras espécies na América do Norte.

Felinos podem usar bueiros como passagem. Há casos pontuais de uso de bueiros por jaguatirica no sul do Texas, onde atropelamentos são uma das maiores causas de mortalidade da espécie (Hewitt et al., 1998). Neste mesmo estudo linces foram registrados atravessando bueiros, mas apesar de tabular os tamanhos dos bueiros, que variaram de 90x90 cm a 3x3 metros, o estudo não relaciona o tamanho com a taxa de passagem de linces (mas veja mais informação logo abaixo).
5.7.2 Cercas

Em um estudo relacionado com o anterior, cercas mostraram-se eficazes para dirigir a passagem das espécies. Bueiros usados por linces tiveram um aumento na frequência de rastros de 3,9 para 7,2 conjuntos de rastros por mês após implementação de cercas com 100 metros para cada lado (Cain et al., 2003).

Deve ser implementado um sistema de escape para o animal caso ele entre na rodovia e fique preso entre as duas cercas (Fig. 4). Note na figura que no lado da rodovia há uma rampa, e no outro lado uma pequena queda, justamente para evitar movimentos contrários.

McCollister & Van Manen (2010) destacam que pequenos animais tendem a escalar ou cavocar sob a cerca para passar, especialmente quando as passagens encontram-se muito distantes uma da outra, recomendando enterrar a cerca e passar fios de arame farpado no topo. Os arames do topo podem estar posicionados com inclinação para o exterior da rodovia, de forma a impedir escaladas.

Figura 4. Sistema de escape, caso a fauna fique entre as duas cercas da rodovia.
5.7.3 Bueiros

Em Cain et al. (2003) dados de armadilhas fotográficas permitiram verificar que a maior parte dos linces usavam o bueiro apenas para passar algum tempo, entrando e saindo pelo mesmo lado do bueiro. Uma análise de regressão determinou que a largura da passagem (sob pontes e bueiros) é um fator importante para a taxa de passagem, indicando que bueiros modificados e maiores (1,85 x 1,85) foram os mais usados. O autor faz referência a vários outros estudos indicando que o local de instalação de bueiros é determinante no seu sucesso, talvez mais do que o desenho do bueiro (Cain et al., 2003). De fato, passagens de maior qualidade de ambiente para o puma, relacionado à presença de presas (veados), foram os mais utilizados em outro estudo, no qual 377 eventos de passagem de puma foram analisados, mas que no caso foram estruturas em forma de ponte (tipo open-span) (n=7) (Gloyne & Clevenger, 2001).

O departamento de transportes dos Estados Unidos especifica o tamanho mínimo de passagens para animais grandes, de 7 metros de largura por 4 metros de altura, mas recomenda aberturas de mais de 10 metros de largura e mais de 4 metros de altura. Não é recomendado bueiro para mamíferos grandes (U.S. Department of Transportation, 2011). Segundo o mesmo manual, pumas atravessarão sobre: 1. pontes (landscape bridges) com largura mínima de 70 metros, sendo recomendada que seja superior a 100 metros, 2. passagens suspensas para fauna com mínimo de 40 a 50 metros de largura, e 50 a 70 metros recomendado, 3. viaduto, 4. passagem inferior para grandes mamíferos (open-span underpass) de 12 metros de largura e 4,5 metros de altura, ou arco de concreto sem fundo de 7 metros de largura e 4 metros de altura, 5. passagem inferior de drenagem com dimensões similares à anterior para grandes carnívoros inclusive o puma (Fig. 5).
5.8 Fatores determinantes nos deslocamentos do puma e outros felinos

Em uma escala de paisagem, a presença do puma tem sido relacionada com ambientes montanhosos. Em Montana verificou-se que a declividade do terreno explicava 73% da presença do puma (Riley & Maleki, 2001). Em Alberta no Canadá esta relação também aparece (Chetkiewicz & Boyce, 2009). No Brasil, já em 1892 Ihering havia registrado o retrocesso do puma para as montanhas (Ihering, 1892). Em Santa Catarina, sua presença foi relacionada com áreas de vegetação remanescente acima de 800 metros de altitude (Mazzolli, 1993).

Esta relação da presença do puma com a altitude ocorre mais em função de áreas de vegetação em bom estado localizarem-se atualmente em locais mais inacessíveis do que com uma preferência ecológica - o puma de fato habita uma variedade grande de ambientes ao longo de toda sua distribuição nas Américas, deserto, floresta Amazônica, montanhas acima de 5.000 metros. Mesmo sendo assim, a declividade e altitude são importantes determinantes no deslocamento das populações atuais de puma, em todo o estado de Santa Catarina, em razão da grande antropização dos demais ambientes.

Isto não significa dizer que o puma, em escala de movimentação, seja um montanhista. Ao contrário de sua restrição geográfica em áreas montanhosas, em uma escala mais próxima prefere movimentar-se em terreno com pouco declive. Em um estudo específico na Califórnia, o puma preferiu declividades abaixo de seis graus e fundo de canyons (Dickson & Beier, 2007).

A densidade humana e de estradas também é um fator determinante na escolha das rotas por pumas (e.g. Chetkiewicz & Boyce, 2009). Apesar de ter sido observado em áreas modificadas e até em áreas suburbanas (Mazzolli, 2012) (Fig. 6), estes registros são exceções. A espécie prefere permanecer em habitats mais conservados mesmo na matriz de ambientes modificados (e.g. florestas exóticas, Mazzolli, 2010), ou seja, tem-se assumido para fins de modelagens de corredores ecológicos que pumas sejam menos sensíveis à características microambientais, respondendo mais à integridade geral do ambiente para propósito de deslocamento (Walker & Craighead, 1997; LaRue & Nielsen, 2008).
6. Metodologia

6.1 Cronograma de trabalho

A rápida demanda para execução da obra da rodovia, e o fato do EIA/RIMA e complementações de fauna já terem sido executadas, limitou o tempo de estudo. Durante um dia de campo registrou-se o traçado da rodovia em GPS, pontos de presença de espécies, pontos descritivos de ambiente, além de pontos para indicação de passa-fauna (Tabela 1).

Tabela 1. Cronograma de trabalho

<table>
<thead>
<tr>
<th>Data</th>
<th>Evento</th>
<th>Local</th>
<th>Envolvidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/01/2013</td>
<td>Reunião</td>
<td>DEINFRA, Florianópolis</td>
<td>Heriberto Hulse Neto heriberto@deinfra.sc.gov.br (DEINFRA), João Luiz da Ros (Sotepa), Joao.luiz@sotepa.eng.br, Caroline Costa caroline@mpb.eng.br, M. Mazzolli</td>
</tr>
<tr>
<td>17/01/2013</td>
<td>Preparação de mapa de roteiro no GPS</td>
<td>Barra Velha</td>
<td>M. Mazzolli</td>
</tr>
<tr>
<td>18/01/2013</td>
<td>Dia de campo</td>
<td>Dr. Pedrinho - Itaiópolis</td>
<td>M. Mazzolli</td>
</tr>
<tr>
<td>08/02/2013</td>
<td>Apresentação do laudo e relatório parcial</td>
<td>Fatma, Florianópolis</td>
<td>Representantes da FATMA, DEINFRA, SOTEP e MPB</td>
</tr>
<tr>
<td>14/02/2013</td>
<td>Entrega do relatório final</td>
<td>MPB</td>
<td>M. Mazzolli</td>
</tr>
</tbody>
</table>
6.2 Área de estudo

Definiu-se uma área de aproximadamente 13 mil quilômetros quadrados (= 1 milhão e 300 mil hectares) em torno da rodovia a ser pavimentada. A definição desta área foi baseada na inclusão de várias reservas vizinhas importantes, como o Parque Nacional da Serra do Itaiai ao sul, e aquelas localizadas na Serra do Mar ao norte. Do ponto de vista de suficiência ecológica, trata-se de uma área extensa que pode representar bem a condição do puma e de outras espécies de felinos na região do Alto Vale do Itajai e Planalto Norte.

6.3 Análise

Basicamente a análise dividiu-se em análise macro (espacial e espacial-populacional), pontual e pontual-espacial.

6.3.1 Análise macro (espacial)

A análise macro consistiu em sobrepor atributos de vegetação remanescente, densidade habitacional, declividade, relevo, e unidades de conservação, para verificar as áreas e corredores potenciais para o puma na região, em um Sistema de Informação Geográfica (SIG).

6.3.2 Análise macro (espacial-populacional)

Trata-se de uma análise de metapopulações de puma.

6.3.3 Análise pontual

A análise pontual refere-se ao estudo de campo, para verificar in loco as condições de habitat e presença de espécies no projeto do traçado da obra.

6.3.4 Análise espacial-pontual

6.4 Detalhes metodológicos

6.4.1 Análise espacial

A análise espacial procurou mostrar graficamente como os fatores conhecidos (topografia, habitat, ocupação humana) que determinam o comportamento de deslocamento de puma e outros felinos podem influenciar o trajeto deste grupo.

Castilho et al. (2001) fizeram uma análise de permeabilidade (ou condutividade) para deslocamento do puma, entretanto usando a vegetação como único fator determinante, sem considerar dados topográficos e de ocupação humana, de
maneira que uma análise mais completa é necessária para precisão para subsidiar tomadas de decisão.

6.4.1.1 Topografia

A topografia foi obtida de mapas altimétricos da mapoteca topográfica digital de Santa Catarina, elaborado com base no modelo digital de elevação da Shuttle Radar Topographic Mission (SRTM) pela Nasa e ajustado pela Epagri. Apresenta-se dividido em classes de 100m de altitude e recortado por bacia hidrográfica. Utilizou-se os mapas das bacias do Rio Canoinhas, Rio Itapocú e Rio Itajaí, unidos em um único tema com a função Geoprocessing Wizard do ArcView 3.2 (ESRI).

Um perfil topográfico específico do projeto de trecho a ser pavimentado foi obtido através da função perfil altitudinal do freeware TrackMaker (Geo Studio Tech, MG).

6.4.1.2 Declividade

Um mapa de declividade foi obtido a partir de cartas topográficas na escala de 1:50.000 da mapoteca topográfica digital de Santa Catarina (Epagri/IBGE 2004). Com a extensão Spatial Analyst do ArcView, curvas de nível foram transformadas para Grid de 20m e deste para um mapa de declividade em graus com a função Surface/Derive Slope.

6.4.1.3 Ocupação humana

Neste item procurou-se determinar o número de habitações por tipo de uso do solo. A hipótese, elaborada a partir da verificação dos temas individuais de uso do solo e unidades habitacionais foi a de que as áreas com florestas naturais e exóticas teriam menor número de habitação por área do que o restante dos tipos de cobertura.

Obteve-se dados de aglomeração de habitações a partir de cartas topográficas na escala de 1:50.000 obtidas da mapoteca topográfica digital de Santa Catarina (Epagri/IBGE 2004). Utilizou-se as cartas de Alto Rio Preto, Apiúna, Blumenau, Campo Alegre, Dona Ema, Ibitipoca, Jaraguá do Sul, Mafra, Pomerode, Rio do Sul, Rio dos Cedros, Rio Itajaí do Norte, Rio Negrinho, Rio Preto do Sul, São Bento do Sul, São Miguel, Taí, Timbó e Witmarsum. As cartas compunham-se de temas distintos, divididos nas 18 cidades mencionadas. Foram unidas em um único tema com a função Geoprocessing Wizard do ArcView 3.2 (ESRI). Para tanto, foi necessário antes mudar os nomes dos arquivos (todos estavam com o mesmo nome, impedindo a função de executar), e converter alguns temas multipontos para pontos usando um script no mesmo software (Anexo III). Estes ponto de habitações foram carregados no Google Earth para verificar, de forma rápida e não-sistemática, se havia correspondência, a uma altura de sobrevôo de 700 metros. Os arquivos foram transferidos do Arcview ao Google Earth através do TrackMaker (Geo Studio Tech, MG), que lê e guarda arquivos em ambos os formatos.

A densidade de habitações por tipo de uso do solo foi derivada dividindo-se o tema uso do solo (GEOAMBIENTE, PPMA-SC/KFW/FATMA, 2008), na escala de 1:50.000, que estava unido, em temas individuais (Floresta nativa em estágio médio e avançado de regeneração, Reflorestamento, Pastagens e campos, e outras coberturas). Utilizou-se a ferramenta Query Builder para selecionar, na tabela de dados, as linhas
referentes aos tipos de uso do solo um por vez. Ao ser selecionado, o tipo de uso do solo foi convertido para um shapefile individual com o comando Convert to Shapefile. Sendo individual, permitiu o recorte das frações do tema sobreposto de interesse (no caso habitações) com a ferramenta ‘em distância próxima’ na função ‘selecionar por tema’. Utilizou-se apenas um recorte da área, que pudesse abranger o projeto da rodovia, de 2.384 km² (238.400 ha), por tratar-se de uma amostragem. Calculou-se a área total de cada polígono do tema em metros quadrados adicionando-se um campo (coluna) denominado Area ao tema, e com a calculadora (Field Calculator) executando-se o comando (Shape).RETURN Área. Somaram-se os polígonos para obtenção da área total do tema, com a ferramenta Statistics da tabela. Selecionaram-se todas as habitações contidas e também aquelas a uma distância de 30 metros de cada tema recortado (no comando Theme/Select by Theme/Are Within Distance of), e estes arquivos foram guardados como shapefiles (comando Convert to Shapefile). Fez-se a contagem do número de habitações provenientes dos dados da EPAGRI/IBGE (2004) a partir de recortes de cada um dos temas mencionados de uso do solo, obtendo-se a densidade de habitações por uso de solo.

Os temas analisados para densidade de habitações foram Reflorestamento, Floresta em médio e avançado estado de regeneração, Pastagens e Campos nativos, e os demais compuseram Outros temas (devido a baixa extensão de área). Excetuou-se Área urbanizada, por obviamente conter mais habitações por área e não incluir-se no planejamento para deslocamento de fauna nesta escala, e Corpos d’água, por não haver habitações neste tipo de cobertura.

6.4.1.4 Unidades de Conservação

Polígonos das Unidades de Conservação foram inseridos no SIG para verificar sua disposição espacial frente às possibilidades de deslocamento das espécies-foco. A partir dos resultados, observou-se tratarem-se de áreas na rota do fluxo de espécies, de maneira que suas áreas foram contabilizadas para a simulação de meta-população de pumas e exigências de imigração (suplementação).

6.4.1.5 Análise pontual

Um reconhecimento a campo foi realizado dia 18 de janeiro de 2013. Previamente, o traçado e os pontos de passagem sugeridos no EIA foram transferidos para um GPS de navegação para orientar o sentido da estrada. Durante o percurso, pontos descritivos do ambiente, pontos de passagem de fauna observados por rastros, e pontos possíveis de passagem de fauna foram registrados. Estas observações foram independentes dos pontos do EIA.

6.4.1.6 Critério para sugestão de passagens

Local — Os locais para instalação de passagens foram sugeridos com base em rastros de animais atravessando a rodovia, supostas trilhas de animais silvestres com entrada para e saída da rodovia, em áreas com vegetação preservada em ambos lados da pista, em áreas com vegetação alterada mas com vegetação nativa próxima, em áreas afastadas de habitações.
Tamanho — o tamanho da passagem sugerida variou com o tamanho do animal que potencialmente irá usá-la, e também com a potencialidade de trânsito das espécies. Bueiros com passagem seca de 1.5 x 1.5 m foram sugeridos para felinos pequenos, 2x2, 3x3 m para felinos como a jaguatirica e o puma, sendo maiores nos locais onde há maior possibilidade de passagem, e de 7x4 m onde há alta possibilidade de passagem de puma. As possibilidades de passagem foram embasadas nos registros de jaguatirica e puma, respectivamente observados durante o estudo do EIA e este estudo.

A observação de rastros a campo foi sistemática, a cada intervalo de 100 a 300 metros, em locais de solo permeável.

6.4.2 Análise de metapopulações e de população mínima viável

A modelagem de populações é essencial para prever se as condições ambientais são ideais para manter uma ou mais populações, e para definir que taxa de fluxo de indivíduos (migração) é necessário para manter a viabilidade populacional das espécies-foco na área definida. Para esta análise definiram-se três blocos populacionais de puma. O puma foi usado como modelo, pois é o mais exigente dos felinos em termos de demanda energética, e além disso alimenta-se de espécies que também sofrem declínio acentuado pela perseguição direta e ocupação humana. Os três blocos foram organizados (arbitrariamente) em Blocos Sul, Central, e Norte (Figura 7).

Valores de habitat foram associados às UCs partindo da premissa que Unidades de Conservação Direta (integral) tem maior valor e abrigam mais indivíduos de puma por área, e as de Conservação Indireta (APAs) e áreas não protegidas tem valor menor (50%). Detalhes dos dados de história natural do puma como taxas de mortalidade, natalidade e reprodutiva, ver Anexo IV, os quais alimentaram o simulador de viabilidade populacional (software Vortex, Lacy et al., 2009). A maior parte destes dados é obtida com acompanhamento exaustivo de populações por muitos anos, produzidos por poucos estudos no mundo. Por isto dados de história natural foram emprestadas do estudo da ‘pantera’ (puma) da Flórida. Emprestar dados de outras populações é perfeitamente aceitável para modelagens populacionais (MacKenzie et al., 2005).

Para cálculo das áreas de cada bloco, polígonos conectados foram selecionados e transformados em temas distintos (Figura 7). Os blocos foram selecionados arbitrariamente com base em hábitats potenciais para o puma. Não havendo informações de presença/ausência de puma para toda a área, o critério para seleção destes hábitats foi baseada na análise de ocupação humana e presença e conectividade de florestas nativas em bom estado e em mosaico com plantios de exóticas (reflorestamentos). Inicialmente o modelo iria considerar apenas a área das UCs, entretanto as florestas em bom estado de regeneração são mais extensas fora de UCs no Bloco Central e Norte. Para recorte dos blocos, criaram-se áreas (temas) de recorte no Arcview dos habitats potenciais, utilizando-se a função ‘Geoprocessing’ e ‘Clip Theme’ para recortar os blocos. A função da tabela (Shape/ReturnArea) foi usada para calcular o tamanho dos polígonos.
7. Resultados

Setenta e três pontos de atributos foram registrados a campo, entre informações sobre o ambiente, rastros de mamíferos, e indicações para implantação de passa-fauna.

7.1 Evidência de travessia por mamíferos

Evidências de rastros de capivara (n=3), veado (n=6), tatu (n=1), graxaim e/ou raposa do campo (n=4), mão-pelada (n=1) e puma (n=1) (Fig. 8 e 9) foram encontrados na rodovia, todos no trecho leste, com exceção de um dos rastros de veado. Um mão pelada foi encontrado atropelado na área correspondente ao desvio da rodovia entre a SC 422 e SC 477.

Rastro de puma encontrado

a)
Figura 8. a) Rastro frontal (mão) de puma, e rastro traseiro (pé), ambos em tamanho real.
Figura 9. Local onde foi encontrado o rastro de puma, junto a um portão de propriedade particular, no ponto 22J 7060217 /644327. Foi possível identificar o caminho tomado pelo indivíduo para travessia da estrada, no sentido da seta presente na figura. Onde se vê a vegetação nativa há um bueiro, que pode ser expandido para abrigar uma passagem.

7.2 Outros resultados a campo e teste de metodologia

Os pontos de maior declividade, obtidos a partir do perfil de altitude (analisados nos parágrafos a seguir), coincidiram com pontos sugeridos de passagem de fauna.

Um dos pontos de declividade (22J 647137 e 7050880) estava próximo (300 m) do ponto onde foi detectada uma jaguatirica durante amostragem do EIA complementar na EST1, e com passagens subterrâneas de fauna sugeridas tanto no EIA complementar (ponto PF6) como durante este estudo (ponto B), e próximo (100 m) da passagem aérea sugerida no EIA complementar.

Outro ponto de declividade (22J 647129 e 7054733) coincidiu com os pontos PF12 e 19 do EIA complementar, e o ponto F deste estudo.

7.3 Análise espacial

7.3.1 Ocupação humana

A camada (tema) de ocupação humana, a partir de dados de aglomeração de habitações, revela possibilidades de rota de migração de orientação noroeste-sudeste ligando Unidades de Conservação, e uma abertura no centro-norte, com possibilidades de rotas de migração oeste (1), norte (2) e leste (3)(Fig. 10). Verificou-se, ao comparar rapidamente estes dados de unidades habitacionais com imagens do Google Earth de 2006, que estão um pouco desatualizados, especialmente em razão da formação de uma barreira recente logo abaixo da gleba norte do Reserva Biológica Estadual do Sassafrás.
Figura 10. Camada de ocupação humana (unidades habitacionais), mostrando as possibilidades de migração no vão da concentração de unidades habitacionais, e entre Unidades de Conservação.

7.3.2 Uso do solo

Traçando rotas seguindo as somente as florestas nativas (em verde mais escuro), na camada de uso do solo, o sentido geral de migração continua como na camada de ocupação humana, com orientação noroeste-sudeste, mas a rota dois (dominada por reflorestamentos) sumiria e a rota três seria mais sinuosa. Neste cenário surge a rota quatro, mas que atravessa uma área muito fragmentada (Fig. 11).
Figura 11. Camada (tema) de uso do solo, mostrando as possibilidades de migração considerando apenas a vegetação nativa, e entre Unidades de Conservação.

7.3.3 Declividade e altitude

A declividade é um dos fatores que auxiliam a manutenção do habitat e portanto do fluxo de espécies. O perfil altitudinal do trecho a ser pavimentado é pouco recortado. Há dois pontos no trecho leste com maior declividade que devem ser considerados como prioritários (Fig. 12).

a)
Há pouca declividade geral da área. O projeto da rodovia atravessa uma região de maior declividade no início da porção leste. Projetando rotas de deslocamento de felinos em escala mais ampla baseado na proximidade de declividade, haveriam duas rotas (Fig. 13). A rota 4 corresponde à rota de mesmo número da camada anterior de uso do solo, e explica porque a vegetação se manteve mesmo com o adensamento da ocupação humana.

No mapa altitudinal é possível verificar que a altitude atinge mil e duzentos metros, e mostra de forma clara que a rodovia em seu trecho leste atravessa uma região com uma variedade maior de cotas altitudinais (Fig. 14).
Figura 14. Cotas altitudinais da área de estudo. A partir deste mapa é possível verificar a origem das áreas de maior declividade no trecho da rodovia, entre as cota altitudinais 700-800m e 900-1200m.
7.3.4 Densidade de habitações por tipo de uso do solo

A análise de densidade de habitações por tipo de uso de solo demonstra que a floresta em bom estado de regeneração encontra-se de duas a oito vezes menos habitada do que os outros tipos de uso do solo (Tabela 4).

De acordo com estes resultados, as rotas através de floresta em bom estado de conservação são as mais propensas a serem utilizadas tanto como hábitat quanto rota para migração, seguido com proximidade pelo reflorestamento.

Tabela 4. Densidade de habitações por tipo de uso do solo. A diferença da menor densidade, em Florestas com boa regeneração, com a da maior densidade, em Pastagens e campos, é de quase oito vezes. Seguido da floresta bem regenerada, vem o reflorestamento com a segunda densidade mais baixa, com aproximadamente duas vezes mais habitações por área do que a floresta, e quatro vezes menor do que o próximo tema.

<table>
<thead>
<tr>
<th>Tipo de uso do solo</th>
<th>Área do tema (km²)</th>
<th>Número de habitações</th>
<th>Densidade de habitações por km² (1 x 1 km)*</th>
<th>Escala proporcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floresta em médio e avançado estado de regeneração</td>
<td>1.586,34</td>
<td>985</td>
<td>0,62</td>
<td>13</td>
</tr>
<tr>
<td>Reflorestamento</td>
<td>328,05</td>
<td>349</td>
<td>1,06</td>
<td>22</td>
</tr>
<tr>
<td>Outros usos (preponderantemente solo exposto e agricultura), e exceto corpos d’água e área urbanizada</td>
<td>135,74</td>
<td>579</td>
<td>4,26</td>
<td>88</td>
</tr>
<tr>
<td>Pastagens e campos</td>
<td>440,97</td>
<td>2130</td>
<td>4,83</td>
<td>100</td>
</tr>
</tbody>
</table>

* (Número de habitações / Área do tema)

Os números da tabela anterior podem ser visualizados no tema de cobertura de solo, no qual as habitações populam as áreas mais abertas, e substancialmente menos nas áreas de florestas nativas e exóticas (reflorestamentos) (Fig. 15).
Figura 15. Recorte do trecho de pavimentação com os tema de uso do solo e pontos de unidades habitacionais sobrepostos.

7.4 Barreiras

Barreiras na forma de crescimento de habitações foram detectadas na análise espacial. A linha negra na figura abaixo (Fig. 16) mostra uma expansão nas habitações ao sul da gleba norte da Reserva Biológica Estadual do Sassafrás, ausentes nos dados do EPAGRI/IBGE (2004). Estes crescimentos em forma de ‘espinha de peixe’ ao conectarem-se podem tornar-se barreiras para deslocamento das espécies.

Na figura abaixo (Fig. 17), as linhas negras representam barreiras ao fluxo migratório de pumas e outras espécies entre o Bloco Central (incluindo a rodovia e a Reserva Biológica Estadual do Sassafrás) com o Bloco Sul (área preservada do Parque Nacional da Serra do Itajaí).

Figura 17. Linhas negras representam barreiras para o fluxo migratório entre o Bloco Central, no qual incluem-se a rodovia SCT 477 e a Reserva Biológica Estadual do Sassafrás, e o Bloco Sul, representado pelo Parque Nacional da Serra do Itajaí.

7.5 Análise de metapopulações

7.5.1 Estimativa de hábitat e densidade de pumas por bloco

O tamanho de população de pumas e sua viabilidade populacional estão diretamente relacionadas com o tamanho e a qualidade das áreas disponíveis como habitat.

O tamanho das áreas foi estimada conforme consta na metodologia. Para calcular o tamanho da população de pumas aplicou-se um valor a cada um dos tipos de uso do solo predominantes que qualificam como habitat (reflorestamento e mata nativa em bom estado).

Estimou-se um total de área de hábitat de pouco mais de 500 mil hectares, e com uma população de 74 pumas distribuídas nos três blocos (Tabela 5).
Tabela 5. Três blocos de UCs e entorno usados para modelagem de sobrevivência e fluxo populacional para três populações de puma. Utilizou-se a densidade de 0.027 pumas por km\(^2\) nas UCs de uso indireto, e de 0.0135 (metade) nas UC de uso direto, áreas fora de UCs, e reflorestamento. Áreas em hectares, para transformar para km\(^2\) dividir por 100.

<table>
<thead>
<tr>
<th>Blocos</th>
<th>Áreas e UCS englobadas</th>
<th>Área total (ha)</th>
<th>No. de indivíduos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloco Sul</td>
<td>Parque Nacional da Serra do Itajaí</td>
<td>57.374</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Áreas de mata nativa em bom estado, mas fragmentadas, no entorno do PARNA</td>
<td>69.819</td>
<td>9</td>
</tr>
<tr>
<td>Subtotal Bloco Sul</td>
<td></td>
<td>127.193</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Reserva Biológica Estadual do Sassafrás</td>
<td>5.229</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>APA do Alto Rio Preto (nativa)</td>
<td>5.592</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>APA do Alto Rio Preto (reflorestamento)</td>
<td>8.380</td>
<td>1</td>
</tr>
<tr>
<td>Bloco Central</td>
<td>Área de mata nativa em bom estado e conectadas (entre si ou em mosaico com reflorestamentos), no entorno das UCs</td>
<td>180.669</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Área de reflorestamentos em mosaico com florestas nativas em bom estado, no entorno das UCs (só reflorestamentos)</td>
<td>24.580</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal Bloco Central</td>
<td></td>
<td>224.450</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>ESEC do Bracinho</td>
<td>4.600</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>APA Rio dos Bugres, APA do Rio Vermelho/ Humbold, APA Alto Rio Turvo, parte da APA da Serra da Dona Francisca que abarca a RPPN Caetezal e também o Parque Ecológico Rofl Colin, parte da APA do Quiriri, parte da APA dos Campos do Quiriri:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Área de mata nativa em bom estado e conectadas (entre si ou em mosaico com reflorestamentos), dentro das UCs</td>
<td>48.223</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Área de reflorestamentos em mosaico com florestas nativas em bom estado, dentro das UCs (só reflorestamentos)</td>
<td>6.945</td>
<td>1</td>
</tr>
<tr>
<td>Bloco Norte</td>
<td>Fora das UCs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Área de mata nativa em bom estado e conectadas (entre si ou em mosaico com reflorestamentos), fora das UCs</td>
<td>83.592</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Área de reflorestamentos em mosaico com florestas nativas em bom estado, fora das UCs (só reflorestamentos)</td>
<td>9.585</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal Bloco Norte</td>
<td></td>
<td>152.945</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>504.588</td>
<td>74</td>
</tr>
</tbody>
</table>
7.5.2 Efeito de isolamento - Bloco sul

O Bloco Sul, representado pelo Parna de Itajaí e entorno, tem uma população estimada de 24 pumas. Isto o coloca como intermediário entre o Bloco Norte (n=20) e o Bloco Central (n=30), servindo como modelo para entender o que pode acontecer em qualquer dos blocos sob isolamento. O Bloco Sul especificamente aparenta já estar em situação de isolamento. Se não estiver isolado, está em vias de isolamento, em razão do crescimento contínuo no número de unidades habitacionais no entorno. Tanto no recorte de uso de solo quanto nas imagens do Google Earth é possível perceber que a conectividade entre o Bloco Sul e o Central está interrompida.

Uma simulação de processo de extinção no aplicativo Vortex mostra que a população de puma deste Bloco é inviável a longo prazo (40 a 80 anos) na ausência de imigração (Fig. 18). Os dados de história natural que foram usados estão no Anexo IV.

a) sem imigrantes

![Figura 18](image)

b) com um macho e uma fêmea imigrantes a cada 3 anos

![Figura 18](image)
mantêm, mas ainda assim com o risco de eventuais situações com baixíssimo número populacional (b).

7.5.3 Metapopulação – todos os blocos

Neste cenário a metapopulação de pumas é representada por populações dos três blocos. A situação de limite mínimo para manutenção da metapopulação, mas ainda com risco de algumas populações eventualmente entrarem em extinção, é a condição de um migrante de cada sexo a cada três anos (Fig. 19). Os dados de história natural que foram usados estão no Anexo IV (idem do anterior).

Figura 19. Simulação (100 iterações) de risco de extinção de pumas em todos os blocos, exigindo imigrações de pelo menos um indivíduo de cada sexo a cada três anos.
7.6 Passagens de fauna

NOME	RENOME	SITUAÇÃO (retorno da SOTTEPA)	Considerações (PPuma)	TIPO	PTO EIA	DIMENSÕES	BUEIRO	CONDIÇÃO	CONDIÇÃO 2	CONDIÇÃO 3	CONDIÇÃO 4	SITUAÇÃO	SITUAÇÃO 2	ZONA	Y	X	
P Felino1	A	ATENDIDO OK	PF ausente 1,5x1,5	presente	preservado							adicionar		22J	7047295	647341	
P Jaguat1	B	ATENDIDO OK	PF PF6 1,5x1,5	presente	preservado	declive	Prox Jaguat	EST 1					igualar		22J	7050698	647466
P Jaguat2	C	ATENDIDO Adicionar por remoção de D. Cerca de C+50 até E -200m	PF ausente 1,5x1,5	ausente	prox D							remover	Substituir por D	22J	7051937	648348	
Pp1	D	ATENDIDO Remover (passar cerca)	PP ausente 2x2	presente	preservado	relevo	rastro de veado	rastro de mão pelada				adicionar		22J	7052371	648268	
Pf2	E	ATENDIDO	PF PF16 1,5x1,5	presente	preservado	declive	Prox Jaguat	EST 1					igualar		22J	7052533	647842
EIAPF12	F	ATENDIDO Cerca +300m e até G -250	PF presente 2x2	presente	caminho							adicionar		22J	7054572	647124	
Veg nat2	G	ATENDIDO OK	PF PF19 2x2	presente	preservado	declive	rastro de veado						igualar		22J	7055155	647234
Pt 4	H	ATENDIDO OK	PF 10 E 11 1,5x1,5	presente	aproveitamento nativa proxima	redundante	remover EIA 11	remover					adicionar		22J	7055430	646617
Pp3	I	ATENDIDO	PP ausente 1,5x1,5	presente	caminho	nativa proxima	rastro veado						adicionar		22J	7056402	645763
Ponte	J	ATENDIDO OK	PP ausente NA	ausente	caminho							remover		22J	7057015	645854	
Pp4	L	DESLOCADO - 200m	OK PF ausente	alongar	presente	ponte	adaptar					adaptar		22J	7057297	645638	
Pp5 Ajust	M	ATENDIDO OK	PP PF13 2x2	presente	preservado	aproveitamento	prox rastro puma						igualar		22J	7059517	645036
Pp6	N	ATENDIDO (cerca entre M↑ e O↓)	OK de cerca M ao P	PF PF17 3x3	presente	aproveitamento	prox rastro puma	prox jaguat EST 2				igualar		22J	7059766	644844	
Rastro Puma	O	ATENDIDO OK	Rastro PF14 7X4	presente	ponte	preservado	rastro capivara	prox jaguat EST 2				igualar		22J	7060217	644327	
Rastro	P	ATENDIDO OK	Rastro ausente 2x2	ausente	preservado	caminhos	prox rastro puma	rastro veado				adicionar		22J	7060821	644106	
Rastro2	Q	CANCELADO (R a 400 m) OK	Rastro ausente 1X1	ausente	alterado	rastro tatu	rastro graxaim				adicionar		22J	7061657	644194		
Pp7	R	ATENDIDO OK	PP proximo 2x2	presente	preservado	conexão	prox rastro puma				adicionar	remover pto eia	22J	7062067	644131		
Pp5	S	ATENDIDO OK	PF ausente 1,5x1,5	ausente	preservado	caminho						adicionar		22J	7062318	643334	
Capivara	T	ATENDIDO OK	PC PF sem nome	1,5x1,5	presente	alterado	rastro	rastro capivara				adicionar		22J	7064676	641619	
Capivara2	U	ATENDIDO OK	Rastro PF5 1,5x1,5	presente	alterado	rastro	rastro capivara				adicionar		22J	7065199	641768		
Pp9	V	DESLOCADO + 400m	OK, cerca - 250m e +100m	PP ausente 1,5x1,5	ausente	alterado	caminho					adicionar		22J	7068892	642940	
Pf	W	ATENDIDO OK	PF PF sem nom	1,5x1,5	presente	alterado	escoamento reservatório					igualar		22J	7064610	640114	
Pp12 Ajust	X	ATENDIDO OK	PP ausente 1,5x1,5	ausente	caminho								adicionar		22J	7069062	631693
P13	Y	ATENDIDO OK	PP ausente 1,5x1,5	ausente	boa caminho	mala nativa						adicionar		22J	7060725	633428	
Rastro3	Z	ATENDIDO OK	Rastro ausente 1,5x1,5	ausente	boa rastro de veado							adicionar		22J	7059438	627535	

Legenda de TIPO: PF= passagem de felinos, PP= passagem de puma e felinos, PC= passagem de capivara, NA= não se aplica. Legenda de SITUAÇÃO DO PROJETO (STP): — em direção a Itaiópolis (oeste); + em direção a Dr. Pedrinho (este).
8. Discussão

A região ainda apresenta condições de abrigar populações de pума e felinos, mas há expansões de residências criando gargalos e barreiras em alguns pontos, as quais devem ser contidas para que não haja extinção local.

As Unidades de Conservação, em razão de sua reduzida extensão territorial, não apresentam condições de manter populações viáveis de felinos sem a conservação dos grandes remanescentes da região. As maiores extensões de floresta nativa contínua e em bom estado de regeneração encontram-se fora das Unidades de Conservação. Isto significa que a manutenção de hábitats e conexões funcionais de fauna devem ser implementadas também fora das UCs.

A pavimentação é viável, desde que as passagens de fauna sejam implantadas, e desde que a ocupação no seu entorno, especialmente em áreas remanescentes, sejam evitadas.

8.1 Pontos de travessia de fauna

A maior parte dos registros de fauna durante a saída a campo foram na porção leste da rodovia, levando a crer que é uma região onde o perigo de atropelamento é maior. Entretanto não é possível concluir que não há risco na porção oeste – locais de possível passagem de fauna são dominados pelos reflorestamentos ao longo da rodovia, mas a floresta nativa contínua está próxima em vários pontos.

8.2 Corredores ecológicos

A modelagem de passagens de felinos foi realizada com quatro rotas principais. Os resultados da modelagem preliminar indicam que, em razão da reduzido número de habitações humanas, as rotas com predomínio de vegetação em médio e avançado estágio de regeneração devem ser as mais significantes para trânsito da fauna, seguidas por reflorestamentos. Apesar disto, microambientes alterados no meio de uma matriz de floresta nativa não devem ser descartados como pontos de travessia, haja visto que o puma, e também os demais felinos, podem atravessar uma matriz modificada cercada por ambientes mais íntegros. Deve-se também levar em conta que a topografia, mesmo suave como ao longo da rodovia, deve influenciar a movimentação dos felinos.

Verificou-se a expansão de habitações que podem comprometer as migrações e portanto a viabilidade das populações de felinos.

8.2.1 Modelagem de hábitat

Neste trabalho não foi produzido um único mapa final como nos resultados padrões de ‘Leat Cost Paths’ ou de qualidade de habitat. Para incorporar realidade em um único mapa, seria necessário excluir os fragmentos entrecortados por solos expostos (relacionados com elevado número de unidades habitacionais), ou seja, isolados. Realizar isto de forma automática (fez-se aqui com polígonos de corte), adicionaria uma complexidade que tornaria um tempo de análise não disponível. Ainda assim, foi possível verificar que houve coincidência entre as rotas nas diferentes camadas.
de atributos; foi também possível verificar a localização dos hábitats remanescentes.

9. Sugestões

9.1 Monitoramento durante instalação da obra

9.1.1 Detectar novos pontos de trânsito de fauna

Usar o método amostral a campo empregado aqui para detectar outras possíveis passagens de fauna.

Como fazer:

Amostrar a estrada repetidamente para monitorar outros possíveis pontos de passagem na própria estrada. Ao longo da rodovia, parar a cada 50 ou 100 metros e verificar rastros em áreas de solo permeável, registrando os pontos no GPS.

9.1.2 Avaliar hábitat para as espécies

Amostrar as áreas que surgiram como possíveis (mas não comprovados) hábitats do puma no Bloco Central e Norte. Grande parte das simulações de hábitat realizadas aqui foram baseadas em suposição de que o puma e outras espécies de felino estariam habitando as áreas mais preservadas. Seria adequado amostrar as áreas para testar este pressuposto.

Como fazer:

Através de amostragens de campo, por observação de rastros (em razão de sua eficiência para detecção de espécies em curto prazo de tempo).

9.2 Monitoramento e manejo após instalação da obra

9.2.1 Avaliar eficiência das passagens de fauna

As passagens de fauna podem ser avaliadas por sua eficiência como passagens de fauna verificando-se seu uso pela fauna.

Como fazer:

O procedimento geralmente emprega armadilhas fotográficas que toma fotografias de animais que transitam nas passagens. Pode-se empregar também armadilhas de rastros para a fauna terrestre, ou seja, cercar as passagens com solo permeável para registro de rastros.
9.2.2 Monitorar pontos de atropelamento

Mesmo com todos os cuidados para criar condições para passagens de fauna, ainda é possível que haja pontos de passagem que não sejam contemplados, podendo levar a atropelamentos. Um monitoramento após a pavimentação poderá indicar se há pontos de concentração de atropelamentos.

Como fazer:

Percorrer a rodovia periodicamente, registrando os pontos de atropelamento com GPS e as espécies prejudicadas. Instalar sinalização e lombadas (eletrônicas ou convencionais) nos pontos de concentração de atropelamentos.

9.3 Manejo de ecossistemas para manutenção de conectividade

9.3.1 Evitar povoamento habitacional às margens da rodovia

Um efeito secundário da estrada é o povoamento às suas margens. Caso isto ocorra em locais preferenciais de passagem de fauna, terá um impacto muito superior ao impacto da estrutura física da estrada, interrompendo irreversivelmente a passagem de muitos elementos da fauna.

Solução proposta:

Aquisição de uma ou mais áreas de pequena extensão, mas críticas para passagem de fauna, evitando sua ocupação. Estas devem ser anexas à rodovia, com interface mínima com a estrada de 500 m.

Como fazer:

Opção 1 — Através das prefeituras. O DEINFRA tem interesse de que as margens de suas rodovias não sejam ocupadas por habitações, em razão da interferência do tráfego local no tráfego da rodovia. Para isto criou um plano de ordenamento territorial, durante o qual já negociou com municípios incorporação de diretrizes em planos diretores. Entretanto, planos diretores podem ser modificados. Sugere-se que as prefeituras adquiram estas áreas críticas ao redor das rodovias.

Opção 2 — Compra de áreas pelo órgão ambiental ou pelo DEINFRA.

9.3.2 ‘Quebrar’ barreiras migratórias já existentes

Solução proposta:

Investigar a possibilidade de estabelecimento de passagem e ‘quebra’ de barreira entre os Blocos e entre Unidades de Conservação.

Como fazer:

Através de parcerias com os municípios, especialmente com os departamentos de meio ambiente, planejamento e infra-estrutura.
9.3.3 Acompanhamento do crescimento de barreiras migratórias

Solução proposta:

Como fazer:

Comparando-se imagens anuais de satélite da região para detectar os pontos de expansão habitacional.

9.3.4 Detectar com precisão as rotas migratórias usadas pelas espécies

Solução proposta:

Monitorar pumas e outras espécies com grande capacidade de deslocamento, por sistema de rastreamento, para determinar exatamente as passagens de fauna.

Como fazer: capturar animais e acompanhá-los por rádio-telemetria, com ênfase em transmissores cujos dados são capturados diretamente por satélite (sem necessidade de campo). Entre os felinos, as jaguatiricas são as mais fáceis de capturar, com gaiolas portáteis. Para capturar pumas, mais cuidadosos, talvez seja necessário cercados grandes, montadas com troncos.

9.4 Estudos EIA para novos empreendimentos rodoviários

É preciso detectar onde a fauna transita – a eficiência das passagens para a fauna terrestre está relacionada com sua posição em relação às áreas estabelecidas pela própria fauna como rotas de passagem.

Como fazer:

Incorporar, logo no termo de referência, a exigência de monitoramento de rastros ao longo de estradas durante o EIA/RIMA como base para sugestão de locais para implantação de passagens de fauna terrestre.
10. Literatura citada

Caso, A. 1994. Home range and habitat use of three neotropical carnivores in northeast Mexico. MSc thesis, Texas A&M University, Kingsville, USA

DEINFRA. 2012b. Relatório Complementar de Fauna do Estudo de Impacto Ambiental (EIA) e do Relatório de Impacto Ambiental (RIMA). Departamento Estadual de Infraestrutura, novembro de 2012, Florianópolis.

11. Anexos

11.1 Anexo I – Demanda do estudo

Prezado Senhor,

Cumprimentando-o cordialmente, a Fundação do Meio Ambiente solicita a complementação ao Estudo de Impacto Ambiental para implantação da rodovia de 72,6 Km: ENTR. ACESSO VOLTA GRANDE - ENTR SC 477/SC 422 - SC 422 : VOLTA TRISTE - MOEMA - SC 422 - DR. PEDRINHO : SC 477, atendendo os seguintes quesitos:

3. As áreas em estudo apresentam alta relevância ecológica e grande biodiversidade e fazem parte da área de ocorrência das espécies ameaçadas de félinos *Leopardus trigrinus*, *Leopardus pardalis*, *Leopardus wiedii* e *Puma concolor*, as quais foram apresentados nos resultados do EIA por método de entrevistas, identificação de vestígios, armadilhas fotográficas e pesquisa bibliográfica, sendo que os últimos registros de *Puma concolor* foram obtidos pelo estudo de fauna da Reserva Biológica do Sasafrás. Como se tratam de espécies listadas como ameaçadas de extinção e, especialmente com relação a *Puma concolor*, é de alta relevância ecológica como topo de cadeia alimentar, faz-se necessário a apresentação de um laudo técnico de avaliação do traçado da rodovia e sua interferência nos linhais e necessidades desta fauna.

4. No laudo técnico deverão ser abordados aspectos de área de vida e fragmentação de habitat, corredores ecológicos e fluxo genético, a conservação das espécies supranacionais e indicação de áreas críticas para a conservação das mesmas. O laudo deverá apresentar avaliações conclusivas quanto à viabilidade do empreendimento frente a manutenção das espécies e, sendo o caso, apresentar medidas mitigadoras aplicáveis, como alternativas ecológicas, passagens de fauna e sinalização. O documento poderá apresentar também, mas não obrigatoriamente, sugestões de ações para a conservação dos outros mamíferos presentes na região e sugestões de ações que minimizem atropelamentos. O documento deverá ser elaborado e assinado por especialista em mamíferos, obrigatoriamente no grupo de félinos, e experiência na avaliação de impactos ambientais. Para esta análise deverá ser estudada a alternativa túnel e outras tecnologias entre os quilômetros 126 a 140 com vistas a manter conectividade para estas espécies. Este estudo tem a função de assegurar às espécies de félinos uma área de corredor ecológico em área de floresta bem preservada e contínua, e assegurarem-lhes sua conservação, também, para a mitigação de área de relevo movimentado cuja passagem da rodovia ocasionará fragmentação de área florestal. A rodovia constitui um impacto severo em área considerada prioritária para conservação da biodiversidade justificando, portanto, a adoção de melhores técnicas na travessia destes trechos.
11.2 Anexo II – consequência de avaliações equivocadas

Evaluating Scientific Inferences about the Florida Panther

PAUL BEIER, MICHAEL R. VAUGHAN, MICHAEL J. CONROY, HOWARD QUIGLEY

At the request of the U.S. Fish and Wildlife Service (USFWS) and the Florida Fish and Wildlife Conservation Commission (FWC), we provide an independent assessment of the reliability of the scientific literature used to support conservation of Florida panthers (Puma concolor coryi). We independently reached similar conclusions about unreliable scientific inferences before discussing the issues with each other or with others. Although a quarter-century of research supports many published conclusions, 2 sets of unreliable inferences may compromise efforts to conserve the species. The first is a set of 4 unreliable inferences that underlie the Panther Habitat Evaluation Model (PHEM), used by agencies to evaluate projects that may affect panther habitat. Specifically, the following assertions are unreliable: 1) panthers are forest obligates, 2) panthers require large (.500 ha) forest patches, 3) panthers are reluctant to cross 90-m gaps of nonforest habitat, and 4) the value of potential panther habitat declines linearly with distance to a population core in south Florida, USA. These assertions are unreliable because the analyses excluded (without mention or rationale) almost half the available data, compared used habitats to an inappropriate set of available habitats, made inferences about habitat preference without any data on available habitats, were based only on panther locations during daytime, ignored telemetry error, or suffered from other flaws. The second is a set of 2 unreliable inferences about panther demography prior to the genetic restoration effort initiated in 1995. Inferences that neonate survival was 0.84 and that the panther population was demographically vigorous prior to 1995 are flawed because the survival analysis ignored mortality during the first 4 months and because other inferences were based on numbers of births and deaths in samples of convenience rather than appropriate vital rates. These faulty inferences about panther demography brought unwarranted credibility to challenges of the genetic restoration program. Faulty inferences of both sets were repeated in subsequent scientific and popular articles; in several instances, previously published work was mis-cited. In its current (2002-2005) version, PHEM is unreliable and should not be used in decisions about panther habitat. Biologists should obtain better demographic estimates and fully analyze how the introgression program has affected these rates. (JOURNAL OF WILDLIFE MANAGEMENT 70(1):236-245; 2006).
11.3 Anexo III – SIG, converter temas multipontos para pontos usando um script

' dialog title to be used in this script
theDT = "Multipoint To Point"
theView = av.GetActiveDoc

for each thm in theView.GetActiveThemes
 if (thm.Is(FTheme).Not) then
 continue
 end
 theFTab = thm.GetFTab
 if (theFTab.GetShapeClass.GetClassName <> "Multipoint") then
 continue
 end
 if (theFTab.IsEditable) then
 continue
 end
 if (theFTab.IsBeingEditedWithRecovery) then
 continue
 end
 defFN = Filename.GetCWD.MakeTmp("mp2p", "shp")
 outFN = FileDialog.Put(defFN, ".*shp", "Saves Point File As")
 if (outFN = nil) then
 return nil
 end
 outFTab = FTab.MakeNew(outFN, Point)
 for each fld in theFTab.GetFields
 if (fld.IsTypeShape) then continue end
 outFTab.AddFields({fld.Clone})
 end
 inShpFld = theFTab.FindField("shape")
 outShpFld = outFTab.FindField("shape")
 av.ShowMsg("Converting" ++ theFTab.GetSrcName.GetFileName.GetBaseName ++ "to" ++ outFN.GetFileName.GetBaseName)
 av.ShowStopButton
 nRecs = theFTab.GetNumRecords
 for each rec in theFTab
 if (av.SetStatus((rec / nRecs) * 100).Not) then break end
 theMP = theFTab.ReturnValue(inShpFld, rec)
 for each pnt in 0..(theMP.AsList.Count - 1)
 newRec = outFTab.AddRecord
 outFTab.SetValue(outShpFld, newRec, theMP.AsList.Get(pnt))
 for each fld in outFTab.GetFields
 if (fld.IsTypeShape) then continue end
 outFTab.SetValue(fld, newRec, theFTab.ReturnValue(theFTab.FindField(fld.GetName), rec))
 end
 end
 end
 end
 outFTab.SetEditable(false)
 outFTab.Flush
 theView.AddTheme(FTheme.Make(outFTab))
 av.ClearMsg
 av.ClearStatus
end
VORTEX 9.99 -- simulation of population dynamics

Supplemented
Wed Feb 06 18:44:07 2013

3 population(s) simulated for 100 years, 100 iterations
Each simulation year is 365 days duration.

Extinction is defined as no animals of one or both sexes.

Inbreeding depression modeled with 3,14000 lethal equivalents per individual,
comprised of 1,57000 recessive lethal alleles,
and 1,57000 lethal equivalents not subject to removal by selection.

Minimum age at dispersal is 1.
Maximum age at dispersal is 5.
Both females and males disperse.
Percent survival during dispersal = 50

Dispersal rate matrix (rows are source populations; columns are recipient populations):

<table>
<thead>
<tr>
<th>Bloco Sul</th>
<th>Bloco Central</th>
<th>Bloco Norte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloco Sul</td>
<td>3.00000</td>
<td>3.00000</td>
</tr>
<tr>
<td>Bloco Central</td>
<td>3.00000</td>
<td>3.00000</td>
</tr>
<tr>
<td>Bloco Norte</td>
<td>3.00000</td>
<td>3.00000</td>
</tr>
</tbody>
</table>

EV in mortality will be concordant among age-sex classes
but independent from EV in reproduction.
Correlation of EV among populations = 0.500000

First age of reproduction for females: 2 for males: 4
Maximum breeding age (senescence): 12
Sex ratio at birth (percent males): 50

Population 1: Bloco Sul

Polygynous mating;
% of adult males in the breeding pool = 50

% adult females breeding = 50
EV in % adult females breeding: SD = 10

Distribution of number of separately sired broods produced by a female in a year ...

0.00 percent of females produce 0 broods (litters, clutches) in an average year
100.00 percent of females produce 1 broods (litters, clutches) in an average year

Of those females producing progeny, ...
17.50 percent of females produce 1 progeny in an average year
50.00 percent of females produce 2 progeny in an average year
30.00 percent of females produce 3 progeny in an average year
2.50 percent of females produce 4 progeny in an average year

% mortality of females between ages 0 and 1 = 20
EV in % mortality; SD = 6
% mortality of females between ages 1 and 2 = 20
EV in % mortality; SD = 3
% mortality of adult females [2<=age<=12] = 17
EV in % mortality: SD = 3
% mortality of males between ages 0 and 1 = 20
EV in % mortality: SD = 6
% mortality of males between ages 1 and 2 = 30
EV in % mortality: SD = 5
% mortality of males between ages 2 and 3 = 30
EV in % mortality: SD = 5
% mortality of males between ages 3 and 4 = 15
EV in % mortality: SD = 5
% mortality of adult males (4<=age<=12) = 15
EV in % mortality: SD = 5

EVs may be adjusted to closest values possible for binomial distribution.

Catastrophe type 1: 0
Type 1 catastrophes are global.
Frequency (as a percent): 0.5
Multiplicative effect on reproduction = 0.95
Multiplicative effect on survival = 0.95

Initial size of Bloco Sul: 24
(set to reflect stable age distribution)

<table>
<thead>
<tr>
<th>Age</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Carrying capacity = 24
EV in Carrying capacity = 3

Animals added to Bloco Sul, year 1 through year 100 at 3 year intervals:
- Females 2 years old: 1
- Males 2 years old: 1

Population 2: Bloco Central
Polygynous mating;
% of adult males in the breeding pool = 50
% adult females breeding = 50
EV in % adult females breeding: SD = 10

Distribution of number of separately sired broods produced by a female in a year ...
- 0.00 percent of females produce 0 broods (litters, clutches) in an average year
- 100.00 percent of females produce 1 broods (litters, clutches) in an average year

Of those females producing progeny, ...
- 17.50 percent of females produce 1 progeny in an average year
- 50.00 percent of females produce 2 progeny in an average year
- 30.00 percent of females produce 3 progeny in an average year
- 2.50 percent of females produce 4 progeny in an average year

% mortality of females between ages 0 and 1 = 20
EV in % mortality: SD = 6
% mortality of females between ages 1 and 2 = 20
EV in % mortality: SD = 3
% mortality of adult females (2<=age<=12) = 17
EV in % mortality: SD = 3
% mortality of males between ages 0 and 1 = 20
EV in % mortality: SD = 6
% mortality of males between ages 1 and 2 = 30
EV in % mortality: SD = 5
% mortality of males between ages 2 and 3 = 30
EV in % mortality: SD = 5
% mortality of males between ages 3 and 4 = 15
EV in % mortality: SD = 5
% mortality of adult males (4<=age<=12) = 15
EV in % mortality: SD = 5

EVs may be adjusted to closest values possible for binomial distribution.

Catastrophe type 1: 0
Type 1 catastrophes are global.
Frequency (as a percent): 0.5
Multiplicative effect on reproduction = 0.95
Multiplicative effect on survival = 0.95

Initial size of Bloco Central: 24
(set to reflect stable age distribution)
Age 1 2 3 4 5 6 7 8 9 10 11 12 Total
4 2 1 1 0 0 0 0 0 11 Males
4 2 2 1 1 1 0 0 0 13 Females

Carrying capacity = 24
EV in Carrying capacity = 3

Animals added to Bloco Central, year 1 through year 100 at 3 year intervals:
females 2 years old: 1
males 2 years old: 1

Population 3: Bloco Norte

Polygynous mating;
% of adult males in the breeding pool = 50
% adult females breeding = 50
EV in % adult females breeding: SD = 10

Distribution of number of separately sired broods produced by a female in a year ...
0.00 percent of females produce 0 broods (litters, clutches) in an average year
100.00 percent of females produce 1 broods (litters, clutches) in an average year

Of those females producing progeny, ...
17.50 percent of females produce 1 progeny in an average year
50.00 percent of females produce 2 progeny in an average year
30.00 percent of females produce 3 progeny in an average year
2.50 percent of females produce 4 progeny in an average year

% mortality of females between ages 0 and 1 = 20
EV in % mortality: SD = 6
% mortality of females between ages 1 and 2 = 20
EV in % mortality: SD = 3
% mortality of adult females (2<=age<=12) = 17
EV in % mortality: SD = 3
% mortality of males between ages 0 and 1 = 20
EV in % mortality: SD = 6
% mortality of males between ages 1 and 2 = 30
EV in % mortality: SD = 5
% mortality of males between ages 2 and 3 = 30
EV in % mortality: SD = 5
% mortality of males between ages 3 and 4 = 15
EV in % mortality: SD = 5
% mortality of adult males (4<=age<=12) = 15
EV in % mortality: SD = 5
EVs may be adjusted to closest values possible for binomial distribution.

Catastrophe type 1: 0
Type 1 catastrophes are global.
Frequency (as a percent): 0.5
Multiplicative effect on reproduction = 0.95
Multiplicative effect on survival = 0.95

Initial size of Bloco Norte: 24
(set to reflect stable age distribution)
Age 1 2 3 4 5 6 7 8 9 10 11 12 Total
 4 2 1 1 1 1 0 0 1 0 0 0 11 Males
 4 2 2 1 1 1 0 0 1 0 0 0 13 Females

Carrying capacity = 24
EV in Carrying capacity = 3

Animals added to Bloco Norte, year 1 through year 100 at 3 year intervals:
females 2 years old: 1
males 2 years old: 1